You are here: Home / Publications

Publications

64. The cluster architecture of carbon in polymer nanocomposites observed by impulse acoustic microscopy
V. Levin, Y. Petronyuk, E. Morokov, L. Chernozatonskii, P. Kuzhir, V. Fierro, A. Celzard, M. Mastrucci, I. Tabacchioni, S. Bistarelli, and S. Bellucci, Phys. Status Solidi b 253 (2016)1952-9.

63. Bilayered graphene as platform of nanostructures with folded edge holes
L.A. Chernozatonskii, V.A. Demin, and Ph. Lambin, Phys. Chem. Chem. Phys. 18 (2016) 27432-41.

62. Scattering of Dirac electrons by randomly distributed nitrogen substitutional impurities in graphene
K. Rakhimov, A. Chaves, and Ph. Lambin, Appl. Sci. 6 (2016) 256.1-11.

61. Electromagnetic and thermal properties of 3D printed multilayered nano-carbon / poly(lactic) acid structures
A. Paddubskaya, N. Valynets, P. Kuzhir, K. Batrakov, S. Maksimenko, R. Kotsilkova, H. Velichkova, I. Petrova, I. Biró, K. Kertész, G.I. Márk, Z.E. Horváth, and L.P. Biró, Appl. Phys. Lett. 119 (2016) 135102.

60. Enhanced microwave-to-terahertz absorption in graphene
K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, Appl. Phys. Lett. 108 (2016) 123101.

59. Temperature induced modification of the mid-infrared response of single-walled carbon nanotubes
M.V. Shuba, A.G. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko, N.A. Poklonski, S. Bellucci, G. Kenanakis, M. Kafesaki, J. Appl. Phys. 119 (2016) 104303.

58. Dielectric properties and the electrical conductivity of flat micronic graphite: polyurethane composites
A. Plyushch, J. Macutkevic, P.P. Kuzhir, J. Banys, V. Fierro, and A. Celzard, J. Nanophoton. 10 (2016) 012511.1-13.

57. Wave-packet dynamical calculations for carbon nanostructures
G. Márk, P. Vancsó, L. Biró, D.V. Kvashnin, L.A. Chernozatonskii, A. Chaves, K.Yu. Rakhimov, and Ph. Lambin, in "Fundamental and Applied NanoElectroMagnetics", edit. A. Maffucci and S. Maksimenko (NATO Sciences for Peace and Security -- Series B, Springer, Amsterdam, 2016), 89-102.

56. Electrodynamics of graphene/polymer multilayers in the GHz frequency domain
Ph. Lambin, M. Lobet, K. Batrakov and P. Kuzhir, in "Fundamental and Applied NanoElectroMagnetics", edit. A. Maffucci and S. Maksimenko (NATO Sciences for Peace and Security -- Series B, Springer, Amsterdam, 2016), 45-67.

55. One-step preparation of multiwall carbon nanotube/silicon hybrids for solar energy conversion
E.V. Lobiak, D.S. Bychanok, E.V. Shlyakhova, P.P. Kuzhir, S.A. Maksi menko, L. Bulusheva, and A.V. Okotrub, J. Nanophoton. 10 (2016) 012507.

54. Electromagnetic properties of graphene nanoplatelets/epoxy composites
A. Plyushch, J. Macutkevic, P. Kuzhir, J. Banys, Dz. Bychanok, Ph. Lambin, S. Bistarelli, A. Cataldo, F. Micciulla, and S. Bellucci, Composites Science and Technology 128 (2016) 75-83.

53. A robust approach to the design of an electromagnetic shield based on pyrolytic carbon
P. Lamberti, P. Kuzhir, and V. Tucci, AIP Advances 6 (2016) 075301.1-11.

52. Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials
M. Lobet, B. Majerus, L. Henrard, and Ph. Lambin, Phys. Rev. B 93 (2016) 235424.1-7.

51. What does see the impulse acoustic microscopy inside nanocomposites?
M. Levin, Y.S. Petronyuk, E.S. Morokov, A. Celzard, S. Bellucci, P.P. Kuzhir, Physics Procedia 70 (2015) 703-6.

50. Optical properties of pyrolytic carbon films versus graphite and graphene
G. Dovbeshko, V. Romanyuk, D. Pidgirnyi, V. Cherepanov, E. Andreev, V. Levin, P. Kuzhir, T. Kaplas, and Yu. Svirko, Nanoscale Research Letters 10 (2015) 234.1-6.

49. Quantum-chemical calculation and visualization of the vibrational modes of graphene in different points of the Brillouin zone
T. Lebedieva, V. Gubanov, G. Dovbeshko, and D. Pidhirnyi, Nanoscale Res. Lett. 10 (2015) 287.1-6.

48. Electromagnetic properties of polyurethane template-based carbon foams in Ka-band
D. Bychanok , A. Plyushch , K. Piasotski , A. Paddubskaya , S. Varanovich, P. Kuzhir, S. Baturkin, A. Klochkov, E. Korovin, M. Letellier, S. Schaefer, A. Szczurek, V. Fierro and A. Celzard, Physica Scripta 90 (2015) 094019.1-9.

47. Robust electromagnetic absorption by graphene/polymer heterostructures
M. Lobet, N. Reckinger, L. Henrard, and Ph. Lambin, Nanotechnology 26 (2015) 285702.1-9.

46. Effects of sonochemical modifications of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites
R. Kotsilkova, E. Ivanov, D. Bychanok, A. Paddubskaya, M. Demidenko, J. Macutkevic, S. Maksimenko, and P. Kuzhir, Composites Science and Technology 106 (2015) 85-92.

45. Broadband dielectric spectroscopy of composites filled with various carbon materials
S. Bellucci, S. Bistartelli, A. Cataldo, F. Micciula, I. Kranauskaite, J. Macutkevic, J. Banys, N. Volynets, A. Paddubskaya, D. Bychanok, P. Kuzhir, S. Maksimenko, V. Fierro, and A. Celzard, IEEE Transactions on Microwave Theory and Technique 63 (2015) 2024-31.

44. Microwave dielectric properties of tannin-based carbon foams
M. Lettelier, J. Macutkevic, A. Paddubskaya, A. Klochkov, P. Kuzhir, J. Banys, V. Fierro, and A. Celzard, Ferroelectrics 479 (2015) 119-26.

43. Microstructure, elastic and electromagnetic properties of epoxy-graphite composites
S. Bellucci, F. Micciulla, V. M. Levin, Yu. S. Petronyuk, L. A. Chernazatonskii, P. P. Kuzhir, A. G. Paddubskaya, J. Macutkevic, M. V. Pletnev, V. Fierro, and A. Celzard, AIP Advances 5, 067137 (2015).

42. Phosphate ceramic - carbon nanotubes composites: liquid aluminium phosphate vs solid magnesium phosphate binder
N. Apanasevich, A. Sokal, K. Lapko, A. Kudlash, V. Lomonosv, A. Plyushch, P. Kuzhir, J. Macutkevic, J. Banys, and A. Okotrub, Ceramics International 41 (2015) 12147-52.

41. Electromagnetic characteristics of thin polyethylene-carbon-polyethylene films
N. I. Volynets, A. G. Lyubimov, A. O. Plyushch, O. G. Poddubskaya, P. P. Kuzhir, E. Yu. Korovin, V. I. Suslyaev, J. Macutkevic, E. S. Pikutskaya, S. A. Baturkin, and Ya. Klochkov, Russian Physics Journal 58 (2015) 629-34.

40. Tannin-based carbon foams for electromagnetic applications
M. Letellier, J. Macutkevic, A. Paddubskaya, A. Pliushch, P. Kuzhir, M. Ivanov, J. Banys, A. Pizzi, V. Fierro, A. Celzard, IEEE Transaction on Electromagnetic Compatibility 57 (2015) 989-95.

39. Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field
V.A. Saroka, K.G. Batrakov, V.A. Demin, and L.A. Chernozatonskii, J. Phys.: Condens. Matter 27 (2015) 145305.1-13.

38. Operational characteristics of a graphene-based electron field emitter
G.S. Bocharov, A.V. Eletskii, D.G. Kvashnin,and L.A. Chernozatonskii, J. Vac. Sci. Technol. B 33 (2015) 041801.

37. Translation symmetry breakdown in low-dimensional lattices of pentagonal rings
P. Avramov, V. Demin, M. Luo, C.H. Choi, P.B. Sorokin, B. Yakobson, and L. Chernozatonskii, J. Phys. Chem. Lett. 6 (2015) 4525-31.

36. Sharp variations in the electronic properties of graphene deposited on h-BN layer
D.G. Kvashnin, S. Bellucci, and   L. A. Chernozatonskii, Phys. Chem. Chem. Phys. 17 (2015), 4354-9.

35. Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes
D.G. Kvashnin, P. Vancsó, L.Yu. Antipina, G.I. Márk, L.P. Biró, P.B. Sorokin, and L.A. Chernozatonskii, Nano Res. 8 (2015) 1250-8.

34. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption
K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, Ph. Lambin, T. Kaplas, and Yu. Svirko, Scientific Reports 4 (2014) 7191.1-5.

33. Edge-modified zigzag-shaped graphene nanoribbons: Structure and electronic properties
V.A. Saroka, K.G. Batrakov, L.A. Chernozatonskii, Phys. Solid State 56 (2014) 2135-45.

32. Impact of symmetry in transport properties of graphene nanoribbons with defects
D.G. Kvashnin and L.A. Chernozatonskii, Appl. Phys. Lett. 105 (2014) 083115.

31. Heat resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application
A. Plyushch, D. Bychanok, P. Kuzhir, S. Maksimenko, K. Lapko, A. Sokol, J. Macutkevic, J. Banys, F. Micciulla, A. Cataldo, and S. Bellucci, Phys. Stat. Solidi (a) 211 (2014) 2580-5.

30. Novel graphene-based nanostructures: physicochemical properties and applications
L.A. Chernozatonskii, P.B. Sorokin, and A.A. Artukh, Russian Chem. Rev. 83 (2014) 251-79.

29. Bi-graphene nano-meshes: structure, properties, and formation
L.A. Chernozatonskii, V.A. Demin, and A.A. Artyukh, JETP Letters 99 (2014) 309-14.

28. Dielectric properties of graphite-based epoxy composites
I. Kranauskaite, J. Macutkevic, P. Kuzhir, N. Volynets, A. Paddubskaya, D. Bychanok, S. Maksimenko, J. Banys, S. Bistarelli, A. Cataldo, F. Micciulla, S. Bellucci, V. Fierro, and A. Celzard, Phys. Stat. Solidi (a) 211 (2014) 1623-33.

27. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond
A.G. Kvashnin, L.A. Chernozatonskii, B.I. Yakobson, and P.B. Sorokin, Nano Letters 14 (2014) 676-81.

26. Similarity in band gap behavior of modified graphene with different types of functionalization
L.A. Chernozatonskii, D.G. Kvashnin, O.P. Kvashnina, and N.A. Konstantinova, J. Phys. Chem. C 118 (2014) 1318-21.

25. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide
G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O.Y Posudievsky, Nanoscale Res. Lett. 9 (2014) 263.1-11.

24. Effect of the disorder in graphene grain boundaries: a wave packet dynamics study
P. Vancsó, G.I. Márk, Ph. Lambin, A. Mayer, Ch. Hwang, and L.P. Biró, Appl. Surf. Sci. 291 (2014) 58-63.

23. Dielectric properties of polymer composites with carbon nanotubes of different diameters
J. Macutkevic, A. Paddubskaya, P. Kuzhir, J. Banys, S. Maksimenko, V.L. Kuznetsov, I.N. Mazov, and D.V.Krasnikov, J. Nanosc. Nanotechn. 14 (2014) 5430-4.

22. A study of random resistor-capacitor-diode networks to assess the electromagnetic properties of carbon nanotube filled polymers
D.S. Bychanok, A.G. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko, C. Brosseau, J. Macutkevic, and S. Bellucci, Appl. Phys. Lett. 103 (2013) 243104.

21. Influence of carbon nanotubes diameters on composite dielectric properties
J. Macutkevic, P. Kuzhir, A. Paddubskaya, M. Shuba, J. Banys, S. Maksimenko, V. L. Kuznetsov, I.N. Mazov, and D.V. Krasnikov, Phys. Stat. Sol. (a) 210 (2013) 2491-8.

20. Onset of electrical percolation in onion-like carbon/poly(methyl methacrylate) composites
J. Macutkevic, P. Kuzhir, A. Paddubskaya, J. Banys, S. Maksimenko, S. Moseenkov, V.L. Kuznetsov, O. Shenderova, and Ph Lambin, Nanosci. Nanotechn. Lett. 5 (2013) 1201-6.

19. Anisotropic electromagnetic properties of polymer composites containing oriented multiwall carbon nanotubes in respect to terahertz polarizer applications
D. Bychanok, M Shuba, P. Kuzhir, S. Maksimenko, V. Kubarev, M. Kanygin, O. Sedelnikova, L. Bulusheva, and A. Okotrub, J. Appl. Phys. 114 (2013) 114304.1-7.

18. Equivalent electric circuits for the simulation of carbon nanotube-epoxy composites
B. De Vivo, P. Lamberti, V. Tucci, P. Kuzhir, S.A Maksimenko, and S. Bellucci, IEEE Trans. Nanotechn. 12 (2013) 696-703.

17. Role of finite size effects in the microwave and sub-terahertz electromagnetic response of multiwall carbon nanotube based composite: Theory and interpretation of experiment
M.V. Shuba, A.V. Melnikov, A.V. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko, and C. Thomsen, Phys. Rev. B 88 (2013) 045436.1-8.

16. Epoxy composites filled with high surface area-carbon fillers: optimization of electromagnetic shielding, electrical, mechanical and thermal properties
P. Kuzhir, A. Paddubskaya, A. Plyushch, N. Volynets, S. Maksimenko, J. Macutkevic, I. Kranauskaite, J. Banys, E. Ivanov, R. Kostilkova, A. Celzard, V. Fierro, J. Zicans, T. Ivanova, R. Merijs Meri, I. Bochkov, A. Cataldo, F. Micciulla, S. Bellucci, and Ph. Lambin, J. Appl. Phys. 114 (2013) 164304.1-7.

15. Electrical transport in carbon black-epoxy resin composites at different temperatures
J. Macutkevic, P. Kuzhir, A. Paddubskaya, S. Maksimenko, J. Banys, A. Celzard, V. Fierro, S. Bistarelli, A. Cataldo, F. Micciulla, and S. Bellucci, J. Appl. Phys. 114 (2013) 033707.1-8.

14. Electronic states of disordered grain boundaries in graphene produced by chemical vapor deposition
P. Nemes-Incze, P. Vancsó, Z. Osváth, G. I. Márk, X. Jin, Y.S. Kim, C. Hwang, Ph. Lambin, C. Chapelier, and L.P. Biró, Carbon 64 (2013) 178-86.

13. Electronic transport through ordered and disordered graphene grain boundaries
P. Vancsó, G.I Márk, Ph. Lambin, A. Mayers, Y.S. Kim, C. Hwang, L.P Biró, Carbon 64 (2013) 101-10.

12. Epoxy resin/carbon black composites below the percolation threshold
J. Macutkevic, P. Kuzhir, A. Paddubskaya, S. Maksimenko, J. Banys, A. Celzard, V. Fierro, E. Stefanutti, A. Cataldo, F. Micciulla, and S. Bellucci, J. Nanosci. Nanotechn. 13 (2013) 5434-9.

11. Electronic structure of a disordered grain boundary in graphene
Ph. Lambin, P. Vancsó, P. Nemes-Incze, G. Márk, and L.P. Biró, in "Physics, chemistry and applications of nanostructures", edit. V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, and C.H. Kam (World scientific, Singapore, 2013) 203-6.

10. Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites
M.A. Kanygin, O.V. Sedelnikova, I.P. Asanov, L.G. Bulusheva, A.V. Okotrub, P.P. Kuzhir, A.O. Plyushch, S.A. Maksimenko, K.N. Lapko, A.A. Sokol, O.A. Ivashkevich, and Ph. Lambin, J. Appl. Phys. 113 (2013) 144315.1-8.

9. Comparative analysis of the IR signal enhancement of biomolecules adsorbed on graphene and graphene oxide nanosheets
G. Dovbeshko, O. Fesenko, O. Gnatyuk, A. Rynder, and O. Posudievsky, in "Nanomaterials Imaging Techniques, Surface Studies, and Applications" (Springer Proceedings in Physics, New York, 2013) 25-34.

8. Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave
D. Bychanok, P. Kuzhir, S. Maksimenko, S. Bellucci, and C. Brosseau, J. Appl. Phys. 113 (2013) 124103.1-6.

7. Quasi-one-dimensional fullerene-nanotube composites: Structure, formation energetics, and electronic properties
L.A. Chernozatonskii, A.A. Artyukh, and V.A. Demin, JETP Lett. 97 (2013) 113-9.

6. Broadband dielectric/electric properties of epoxy thin films filled with multiwalled carbon nanotubes
J. Macutkevic, P.P. Kuzhir, A.G. Paddubskaya, J. Banys, S.A. Maksimenko, E. Stefanutti, F. Micciulla, and S. Bellucci, J. Nanophotonics 7 (2013) 073593.1-14.

5. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids
M.V. Shuba, A.G. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko, V.K. Ksenevich , G. Niaura, D. Seliuta, I. Kašalynas, and G. Valušis, J. Nanotechn. 23 (2012) 495714.1-9.

4. Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites
P.P. Kuzhir, A.G. Paddubskaya, M.V. Shuba, S.A. Maksimenko, A. Celzard, V. Fierro, G. Amaral-Labat, A. Pizzi, G. Valusis, J. Macutkevic, M. Ivanov, J. Banys, S. Bistarelli, A. Cataldo, M. Mastrucci, F. Micciulla, I. Sacco, E. Stefanutti, and S. Bellucci, J. Nanophotonics 6 (2012) 061715.1-18.

3. Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes
M.V. Shuba, A.G. Paddubskaya, P.P. Kuzhir, G.Y. Slepyan, D. Seliuta, I. Kašalynas, G. Valušis, and A. Lakhtakia, J. Nanophotonics 6 (2012) 061707.1-10.

2. Enhancement of infrared absorption of biomolecules absorbed on single-wall carbon nanotubes and graphene nanosheets
G. Dovbeshko, O. Fesenko, O. Gnatyuk, A. Rynder, and O. Posudievsky, J. Nanophotonics 6 (2012) 061711.

1. Special section guest editorial: Fundamental and applied nanoelectromagnetics
S.A. Maksimenko, J. Nanophotonics 6 (2012) 061799.1-2.